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Abstract 

Accurate lung tumor targeting in real time plays 
a fundamental role in image-guide radiotherapy of 
lung cancers. Precise tumor targeting is required for 
both respiratory gating and tracking. Gating is 
considered as the current state of the art for precise 
lung cancer radiotherapy, which irradiates the tumor 
when it moves into a predefined gating window. 
Tracking seems to be a next-generation technique, and 
it operates in a more aggressive fashion by following 
the tumor position with radiation beam in real time. 
Existing methods for gating and tracking often rely on 
observed motion patterns of external surrogates or 
implanted fiducial markers. However, external 
surrogates suffer from certain degrees of inaccuracy, 
and implanted fiducial markers are in limited uses due 
to the risk of pneumothorax. Therefore, direct tumor 
targeting techniques without implanting fiducial 
markers are desired. Previous studies in fluoroscopic 
markerless targeting are mainly based on template 
matching methods, which may fail when tumor 
boundary is unclear in fluoroscopic images. In this 
paper, we propose a novel framework of markerless 
gating and tracking based on machine learning 
algorithms. Specifically, gating is treated as a 
two-class classification problem, which is solved by 
Principal Component Analysis (PCA) and Artificial 
Neural Network (ANN). Further, we formulate the 
tracking problem as a regression task, which employs 

the correlation between the tumor position and nearby 
surrogate anatomic features in the image. Four 
regression methods were tested in this study: 1-degree 
and 2-degree linear regression, artificial neural 
network (ANN), and support vector machine (SVM). 
Finally, we demonstrate the superb performance of 
the proposed markerless gating and tracking 
algorithms on 10 fluoroscopic image sequences of 9 
patients. For gating, the target coverage (the 
precision) ranges from 90% to 99%, with mean of 
96.5%. For tracking, the mean localization error is 
about 2.1 pixels and the maximum error at 95% 
confidence level is about 4.6 pixels (pixel size is about 
0.5 mm).  

1. Introduction 

A major source of tumor targeting inaccuracy in 

hypofractionated lung cancer radiotherapy is from the 

respiration induced lung tumor motion (Jiang 2006). 

For some patients, the respiration tumor motion can be 

clinically significant (at the order of greater than 2–3 

cm). Therefore, motion management techniques play a 

critical role to reduce the incidence and severity of 

normal tissue complications and to increase local 

control through dose escalation.  

There are two promising techniques for managing 

tumor motion in radiotherapy: gating and tracking. 

Gating is considered as the current state of the art 

technique and has been adopted in clinical practice by 
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some cancer centers. The goal of an automated gating 

algorithm is to decide when the tumor moves into a 

predefined small gating window, thus turning the 

beam on accordingly. Compared with gating which 

appears to be a passive targeting method, tracking 

operates in an aggressive fashion by following the 

tumor position with radiation beam in real time. 

Although technically challenging, tracking seems a 

promising next generation technique for motion 

management.  

Directly detecting the tumor mass in real-time 

during the treatment is usually very difficult and 

unreliable. Previous studies often utilize observed 

motion patterns of various external surrogates or 

implanted fiducial markers to identify the tumor 

position. However, it has been observed that external 

surrogates may suffer from the accuracy problem. On 

the other hand, implanted fiducial markers are in 

limited uses due to the risk of pneumothorax. 

Therefore, tumor targeting techniques that rely on 

neither the external surrogates nor the implanted 

fiducial markers are desired.  

Previous studies in fluoroscopic markerless 
targeting are mainly based on template matching 

methods (Berbeco et al 2005, Cui et al 2007, Cui et al 

2007). However, the performance of template 

matching greatly degrades when the tumor boundary 

is unclear in fluoroscopic images. Additionally, 

building a set of representative templates is not an 

easy task. In this paper, we propose a novel 

framework for markerless gating and tracking based 

on machine learning algorithms. Specifically, gating is 

treated as a two-class classification problem, and 

tracking is formulated as a regression task. We 

demonstrate the superb performance of markerless 

gating and tracking algorithms on 10 fluoroscopic 

image sequences of 9 patients.  

2. Methods and materials  

2.1 Image data 

To develop and evaluate the proposed algorithms, 

fluoroscopic image sequences (15 frames per second) 

for 9 lung cancer patients were acquired using an 

on-board x-ray imaging (OBI) system (Varian Medical 

Systems, Palo Alto, CA, USA). One patient had 

tumors in both left and right lungs. Therefore, 10 

fluoroscopic sequences were used retrospectively. The 

average video length is about 40 seconds (i.e. 600 

frames). For each patient, 15 seconds of fluoroscopic 

images (225 frames) at the beginning of the sequence 

are used as training data. In general, 15 seconds of 

fluoroscopic images include 3 to 4 breathing cycles. 

The remaining data are used for testing the proposed 

gating and tracking algorithms. The tumor positions 

are manually identified by expert observers to serve as 

the ground truth. All our algorithms are implemented 

on Matlab 7.3 platform.  

2.2 Gating algorithm 

We first downsample the original images with 

size 1024-by-768 to obtain 512-by-384 images. Then, 

a rectangular region of interest (ROI) (with size 

100-by-100 pixels) is cropped to contain the target 

tumor motion and to exclude other irrelevant regions. 

The tumor positions in the ROI images are manually 

identified to serve as ground-truth. A gating window is 

set at the end-of-exhale phase, and the goal is to 

design algorithms that can automatically determine if 

the tumor is in the gating window. Since the tumor 

motion in the superior-inferior direction (y-direction) 

dominates, in this work we only set a threshold in the 
y-direction to generate the gating window (see figure 

1).  
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Figure 1: Divide data into training and testing subsets, and set a gating threshold in y-direction.

The first part of the proposed gating algorithm is 

dimensionality reduction, which aims at mapping the 

ROI images into a low-dimensional space. The 

purpose of dimensionality reduction is to reduce data 

amount and to extract significant features 

automatically. Five methods are tested in this work, 

including PCA (Turk et al 1991) and four nonlinear 

manifold learning methods (LLE, LTSA, Laplacian 

eigenmap, and diffusion maps) (Lin et al 2008). PCA 

is a classical linear dimensionality reduction method, 

which has been widely used in data analysis and 

pattern classification. However, PCA fails on curved 

nonlinear data sets since different branches of data 

points may be mixed to make distances disordered. 

Manifold learning methods seek to unfold the curved 

nonlinear data, while at the same time preserving 

certain properties (such as geodesic distances and 

angles). In this study, each 100-by-100 ROI image is 

considered as a 10,000-dimesional vector. In the 

training session, 225 frames of training data are firstly 

mapped into a 30-dimensional linear space by using 

PCA in order to reduce data amount greatly. Then 

these 30-dimensional data points are mapped into a 

10-dimensional space by using all five dimensionality 

reduction methods further.  

The second part is classification stage. In this 

work, artificial neural network (ANN) (Alpaydin 2004, 

Mitchell 1997) is used and compared with support 

vector machine (SVM) (Cui et al 2008). A neural 

network is an effective computational model for 

pattern classification and function approximation (or 

regression analysis). We employ a standard three-layer 

neural network with error backpropagation algorithm. 

Specifically, the input layer has 10 neurons to match 

the 10-dimensional input data after dimensionality 

reduction. There are 5 neurons in the hidden layer and 

only one neuron in the output layer.  

2.3 Tracking algorithm 

The proposed algorithm is based on the 

observation that the motion of some anatomic features 

in the images (called surrogates) may be well 

correlated to the tumor motion. The correlation 

between the tumor position and the motion pattern of 

surrogates can be captured by regression analysis 

techniques. The proposed algorithm consists of four 

main steps: 1) selecting surrogate windows; 2) 

extracting spatiotemporal patterns from the surrogate 

windows; 3) establishing regression between the 

tumor position and the spatiotemporal patterns; and 4) 

predicting tumor location using the established 

regression model. The first three steps are done using 

training image data before the treatment while the 

fourth step is done using the image data acquired 

during the treatment delivery in real time.  

A few surrogate windows are created in the first 

frame of the training image sequence, which are 

assumed to be more or less correlated with the tumor 

motion. In the remaining training frames, the location 

of a surrogate window is the same and the image 
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moves inside it. One window can be placed to contain 

the diaphragm, if visible in the image, which usually 

has a strong correlation with tumor motion in the 

superior-inferior (SI) direction (y-direction in this 

proposal). Other windows can contain any visible 

moving anatomic structures such as the lung boundary 

or even the tumor itself. In our preliminary 

experiments, only three surrogates are selected and 

placed on the diaphragm, the lung boundary, and the 

tumor itself. The diaphragm is closely related to the 

tumor motion in y-direction, and the nearby lung wall 

correlates to the tumor motion in x-direction (lateral). 

If the image quality is acceptable and the tumor itself 

has clear shape, the surrogate window placed on the 

tumor can also be helpful to predict the tumor 

position.  

Figure 2: 3D embedding of the diaphragm images 

using PCA, and representative images are shown next 

to red circled points at different location in the 3D 

PCA space, representing different positions of the 

diaphragm. 

The features in the selected surrogate windows 

are not tracked directly. Instead, we use the principal 

component analysis (PCA) to map each surrogate 

window to a low-dimensional space to get a compact 

coordinate representation (Turk and Pentland 1991). 

In our experiments, based on the eigenvalues, we 

choose to use the first three principal components to 

represent a surrogate window. The coordinate 

representation of three surrogate windows are denoted 

as (z1, z2, …, z9), where (z1, z2, z3) is for the first 

window, (z4, z5, z6) is for the second, and (z7, z8, z9) is 

for the last. Using the 3D representations in PCA 

embedding space, a surrogate window is reduced to a 

point, which follows a well defined trajectory. The 

more clear the anatomic feature in the window, the 

better defined the trajectory. The location of a 

surrogate window selected on the first training frame 

is fixed for the remaining frames while the image 

moves inside it, leading to the trajectory in PCA space. 

This is illustrated in figure 2, where representative 

images are shown next to red circled points at 

different parts of the trajectory in 3D PCA space. As 

the diaphragm moves up and down, the corresponding 

point in 3D PCA space moves along the trajectory 

from one end to the other.  

The third step is to build regression model to 

predict the tumor position (x, y) based on the 

coordinate representations of surrogate windows (z1,

z2, …, z9). 

3. Experimental results 

3.1 Gating 

In pattern classification, the performance can be 

measured with numbers of true positive (tp), false 

positive (fp), true negative (tn), and false negative (fn).

In general, percentage measures can be used further, 

such as accuracy (=(tp+tn)/all), recall (=tp/(tp+fn)), 

and precision (=tp/(tp+fp)). The precision is also 

called target coverage (TC), which is of more clinical 

importance. For example, a TC of 80% means that 

80% of the prescribed dose is delivered to the target 

and 20% delivered to the surrounding normal tissues. 

Figure 3 shows an example of the gating results.  

We use CMU neural network implementation in 

C (Mitchell 1997) as our classification method, which 

is wrapped into a DLL that can be called from Matlab. 

For comparison, the support vector machine 

implementation Libsvm (Hsu et al 2007, Chang et al 

2007) is employed. There are 10 image sequences 

used for testing the gating system. Each image 

sequence is divided into training data (175 frames), 

validation data (50 frames), and testing data (other 
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frames). We train the neural network 10 times to find 

the best initial network weights on the validation data 

set. Similarly, SVM needs to find the best 

combination of two parameters (RBF kernel 

parameter � and penalty parameter C). The best SVM 

parameters are found by a complete grid-search on 

5 4 14 152 , 2 ,2 ,2C � �� �  and 15 14 14 152 , 2 ,2 ,2� � �� � .

Figure 3: An example of gating signal showing four kinds of classification results: true positive (tp), false 

positive (fp), false negative (fn), and true negative (tn). 

The experimental results of ANN and SVM show 

that on average PCA performs better than other 4 

manifold learning methods, indicating that linear 

dimensionality reduction methods like PCA are 

suitable tools for the gating application. For one single 

patient, sometimes using certain manifold learning 

method can offer better precision (TC) than using 

PCA. On the other hand, ANN and SVM yield similar 

results if a same dimensionality reduction method is 

used. For example, using PCA and ANN yields an 

average result of accuracy 96.3, recall 89.9, and 

precision 97.8. If using PCA and SVM, the average 

result is accuracy 94.9, recall 84.9, and precision 97.7.

From this comparison, we can see that ANN produces 

better accuracy and better recall than SVM.  

Both ANN and SVM are implemented in C/C++. 

Training ANN is more efficient than training SVM 

since SVM needs to search the best combination of 

two parameters. The running time of training ANN 10 

times is about 0.1521 second on an Intel Core 2 Duo 

2.66 GHz Machine, while it takes 2.6332 seconds on 

training SVM to search the best parameters.  

3.2 Tracking  

In our experiments, we use Matlab neural 

network toolbox for ANN implementation and Libsvm 

for SVM implementation. Our results show that the 

2-degree linear regression may suffer from the 

over-fitting problem, as the tracking errors for the 

testing data are much higher than that of the training 

data. For comparison, we compute the mean tracking 

errors, e  and the maximum tracking error at a 95% 

confidence level, e95. The tracking results of four 

methods on 10 fluoroscopic videos show that the 

performance of all four regression methods is about 

the same, with ANN regression performing slightly 

better than others at e = 2.1 pixels and e95 = 4.6 

pixels (the pixel size is about 0.5 mm). It is worth 

noticing that ANN is also more robust than other 

methods, with the maximum e95 of 6.5 pixels, while 

for the other three methods the maximum e95 at least 

doubles this value.  

4. Conclusion 

In this work, we formulated the tumor targeting 

tasks (gating and tracking) as supervised learning 

problems, and the excellent experimental results were 

demonstrated on 10 fluoroscopic image sequences. In 

the future, we aims at improving the performance of 

our proposed tumor targeting system by following the 

three promising directions: (1) Powerful supervised 

learning algorithms with better accuracies can 

improve the performance of tumor targeting; (2) 

Temporal relationships should be incorporated to 
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make the gating and tracking results coherent in the 

temporal dimension; (3) Online learning methods can 

greatly adapt the tumor targeting system to each 

patient by allowing the correction of previous errors. 

Acknowledgments 

The project is partially supported by an NCI 

grant (1 R21 CA110177 A 01A1), a National Science 

Foundation of China (NSFC) Grant 60775006, 

National Key Basic Research Program of China 

(NKBRP) Grant 2004CB318005.  

References 

Jiang S B 2006. Radiotherapy of mobile tumors. Semin. 

Radiat. Oncol. 16: 239-248.  

Berbeco R L, Mostafavi H, Sharp G C, Jiang S B 2005. 

Towards fluoroscopic respiratory gating for lung 

tumours without radiopaque markers. Phys Med Biol

50: 4481-4490.  

Cui Y, Dy J G, Sharp G C, Alexander B, Jiang S B 2007. 

Robust fluoroscopic respiratory gating for lung cancer 

radiotherapy without implanted fiducial markers. Phys 

Med Biol 52:741-755.  

Cui Y, Dy J G, Sharp G C, Alexander B and Jiang S B 2007. 

Multiple template-based fluoroscopic tracking of lung 

tumor mass without implanted fiducial markers. Phys 

Med Biol 52(20): 6229-42.  

Turk M and Pentland A 1991. Eigenfaces for Recognition,. 

J. Cognitive Neuroscience, 3(1): 71-86.  

Lin T and Zha H 2008. Riemannian manifold learning. 

IEEE Trans. Pattern Analysis and Machine 

Intelligence 30(5):796-809. 

Alpaydin E 2004. Introduction to Machine Learning. The 

MIT Press. 

Mitchell T M 1997. Machine Learning. McGraw-Hill Press.  

Cui Y, Dy J G, Sharp G C, Alexander B, Jiang S B 2008. 

Fluoroscopic gating without implanted fiducial markers 

for lung cancer radiotherapy based on support vector 

Machines. Manuscript.  

Hsu C W, Chang C C and Lin C J 2007. A practical guide to 

support vector classification.  

Chang C C and Lin C J 2007. LIBSVM : a library for 

support vector machines.  

      

538

Authorized licensed use limited to: Peking University. Downloaded on December 28, 2008 at 23:11 from IEEE Xplore.  Restrictions apply.


