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Abstract

We propose a novel approach for on-line treatment 
verification using cine EPID (Electronic Portal Imaging 
Device) images for hypofractionated lung radiotherapy 
based on a machine learning algorithm. 
Hypofractionated lung radiotherapy has high precision 
requirement, and it is essential to effectively monitor the 
target making sure the tumor is within beam aperture. We 
model the treatment verification problem as a two-class 
classification problem and apply Artificial Neural 
Network (ANN) to classify the cine EPID images acquired 
during the treatment into corresponding classes—tumor 
inside or outside of the beam aperture. Training samples 
of ANN are generated using digitally reconstructed 
radiograph (DRR) with artificially added shifts in tumor 
location—to simulate cine EPID images with different 
tumor locations. Principal Component Analysis (PCA) is 
used to reduce the dimensionality of the training samples 
and cine EPID images acquired during the treatment. 
The proposed treatment verification algorithm has been 
tested on six hypofrationated lung patients in a 
retrospective fashion. On average, our proposed 
algorithm achieved 94.66% classification accuracy, 
94.50% recall rate, and 99.79% precision rate.  

1. Introduction 

In the United States, lung cancer is the second most 
prevalent cancer and the leading cause of cancer death, 
accounting for about 30% of all cancer mortality [1]. 
Hypofractionated lung radiotherapy is being increasingly 
employed as an alternate modality for the treatment of 
primary and secondary lung cancers. This therapy has the 
important advantages of allowing shortened treatment 
times while delivering higher effective radiobiological 
doses. However, normal tissues surrounding the tumors 
are also exposed to high-dose levels of radiation. 
Furthermore, cancerous tissue can occasionally move 

outside the irradiation field, e.g. when the patient has 
sudden irregular breathing or episodes of coughing. 
Under these circumstances, malignant tissue will be 
missed, and even more normal tissue than planned will be 
irradiated. A very large fractional dose (e.g., 5 Gy or 
more) is commonly applied in hypofractionated lung 
radiotherapy. Consequently, this is in many ways an 
ablative therapy, both to the tumors and to the normal 
tissues surrounding them. Consequently, the precision 
requirement of hypofracionated lung radiotherapy is high. 
It is absolutely critical to effectively monitor the target to 
ensure maximal irradiation of the tumor with minimal 
irradiation of surrounding normal tissue.  

The major uncertainty in treating lung cancer is the 
respiratory lung tumor motion, which can be clinically 
significant for some patients (e.g., of the order of 2 – 
3cm) [2]. This uncertainty must be dealt with when 
delivering hypofractionated lung radiotherapy. Typically, 
margins are added to accommodate respiratory motion. 
However, even with margins, tumors, or portions of them, 
will occasionally move outside the irradiation field. 
Abrupt coughing, dramatically changing breathing 
patterns, and sudden occurrences of pain, all can occur 
during treatment. Any one of these events can result in 
part or the entire tumor moving outside the irradiation 
field. It is critically important to constantly monitor the 
patients’ treatment—when the tumor is detected outside 
the irradiation field, the treatment must be interrupted. 
The treatment should be resumed only when the tumor 
returns to the irradiation field or, in extreme cases, after 
patient re-setup. 

EPID acquisition in cine mode does not require 
additional radiation dose, and yet the images generated 
carry information indicating tumor position. Several 
methods for monitoring radiation therapy have been 
developed using cine EPID images, with or without 
implanted markers. 
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Berbeco et al. developed a matching technique for 
respiratory-gated liver radiotherapy treatment verification 
with an EPID in cine mode [3, 4]. Implanted radio opaque 
fiducial markers inside or near the target are required for 
this technique. The markers are contoured on the planning 
CT set, enabling users to create digitally reconstructed 
radiographs (DRRs) for each treatment beam. During the 
treatment, a sequence of EPID images can be acquired 
without disrupting the treatment routine. Implanted 
markers are visualized in the images and their positions in 
the beam’s eye view (BEV) are calculated off-line and 
compared to the reference position by matching the field 
apertures in corresponding EPID and DRR images. 
Tumor displacement was calculated for one patient with 
three implanted markers. The case study demonstrated the 
feasibility of the proposed method. 

For lung cancer patients, implantation of fiducial 
markers is not widely acceptable due to the risk of 
pneumothorax [3, 5-8]. Arimura et al. considered using 
cine EPID images for measurement of displacement 
vectors of tumor position in lung radiotherapy without 
implanted markers [9]. A template matching technique 
based on cross-correlation coefficients was proposed to 
calculate the similarity between a reference portal image 
and each cine EPID image. 5 patients with non-small cell 
lung cancer and one patient with metastasis were included 
for a validation study. The proposed method worked well 
for 4 cases but not well for the other 2. 

To develop a more robust system, we propose an 
alternative approach for treatment verification of 
hypofractionated lung radiotherapy using cine EPID 
images without implanted markers. Artificial Neural 
Network (ANN) based technique will be developed to 
classify the cine EPID images into two classes: images 
with the tumor inside the radiation field and images with 
the tumor outside the radiation field. 

This paper is organized as follows: section 2 will 
introduce methods and materials used in this work, 
including brief introduction of ANN and detailed 
description of how to apply it to our treatment verification 
problem. Section 3 presents experimental results. Section 
4 will conclude this work and plan future work. 

2. Methods and materials 

The goal of on-line treatment verification is to monitor 
the tumor to verify if it is inside the radiation field (or 
beam aperture). If it is inside, treatment goes on. 
Otherwise, treatment beam should be turned off. This 
provides us with a clue that the on-line treatment 
verification problem can in fact be modeled as a 

classification problem. EPID cine images correspond to 
tumor inside the aperture can be treated as one class, and 
EPID cine images correspond to tumor outside the 
aperture can be treated as another class. In this work, we 
apply a machine learning algorithm, ANN, for treatment 
verification. We will test its feasibility off-line 
retrospectively for hypofractionated lung radiotherapy. 

2.1. Artificial Neural Network. An Artificial Neural 
Network is a mathematical model inspired by the way 
biological nervous system processes information. ANN 
includes massively parallel systems with large numbers of 
interconnected simple processors, and it can solve many 
challenging computational problems. For classification 
problem, ANN will learn example (training samples) of 
each class to extract its corresponding patterns and detect 
its unique trends. A trained ANN can therefore classify 
new samples into corresponding classes with high 
accuracy. More details on applying ANN on cancer 
research can be found in [10]. 

2.2. Training ANN. The first step of the ANN is 
learning, or training from samples. A trained neural 
network can be thought of as an “expert” in the category 
of information it has been given to analyze. In our 
application of hypofractionated lung radiotherapy 
verification using cine EPID images, the ideal training 
samples would naturally be cine EPID images. There are, 
however, two problems. First, ANN requires a large 
number of training samples to achieve reasonable results, 
and there aren’t enough cine EPID images generated 
during the treatment to meet that standard. Second, to be 
able to verify the treatment using cine EPID images 
during the treatment, the ANN training has to be 
completed before the treatment, when the cine EPID
images are not yet available. For these reasons, cine EPID
images cannot be used as training samples.  

We generate training images from DRR—to simulate 
cine EPID images with various artificially altered tumor 
locations. DRRs were created in the BEV for each field. 
The field edges (MLC contours) were superimposed on 
these images. The first image in Figure 1 illustrates an 
example of DRR of a treatment field. The solid red 
contour is the MLC contour. By shifting the MLC 
contour, the sub-image defined by the contour changes 
accordingly. If each sub-image is treated as a simulated 
cine EPID image, we can simulate cine EPID images with 
different tumor locations. Once again, consider the first 
image of Figure 1: the blue and green dashed contours are 
two examples of MLC contour at different locations. 
Tumor locations are different in the sub-images outlined 
by the corresponding contours. In this fashion, we can 
simulate cine EPID images with different tumor locations. 
The two images on the right side of Figure 1 are the 
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enlarged versions of the sub-images defined by the blue 
and green dashed contours in the first image, respectively. 
If we limit the MLC contour to move inside of an m n�
pixel sized window at the step size of one pixel, we can 
generate mn  training images. 

Figure 1 The image on the left: DRR of a treatment field. 
The solid red contour is the MLC edge. The blue and 
green dashed contours define two examples of the 
training images for ANN. The sub-images inside the blue 
and green contours have been enlarged and displayed on 
upper right and lower right, respectively. 

    The clinical target volume (CTV) is defined by the 
physician on 4DCT and is projected onto each DRR. 
Based on the location of the CTV, we can calculate what 
percentage of the tumor is in the beam aperture of each 
training image. With a user-defined threshold p%, we 
associate class 1 to the training image if more than p% of
the tumor is in MLC and class -1 otherwise. 

From the total of mn training images, the ANN can 
learn what features indicate class 1 and what features 
indicate class -1. It can create its own organization or 
representation of the information it receives during the 
learning time. The trained network can therefore analyze 
the cine EPID images obtained during the treatment and 
classify them into the corresponding class 1 or -1. 

2.3. Image processing. As we stated above, we used 
DRR instead of cine EPID images for neural network 
training. However, DRR and cine EPID images are 
different image modalities. Their pixel resolutions might 
be different, and their intensity values might be in 
different ranges. To enhance the ANN’s performance, we 
applied image processing techniques to the DRR to make 
DRR and cine EPID images more closely resemble each 
other. First we either sub-sample or interpolate DRR to 
make its resolution the same as cine EPID image, 
depending on the original resolution of DRR. Then, 

histogram equalization was applied on each DRR and 
cine EPID image to enhance image contrast. Finally, the
intensity value of DRR was mapped to the same range of 
cine EPID images. Based on our experience, pre-
processing the images can significantly improve the ANN 
performance. 

2.4. Principal Component Analysis (PCA). A typical 
cine EPID image might have an approximate size of 
100 100� pixels. This means the dimensionality of a 
training sample would be 100 100 10, 000� � . Significant 
computational time and resources would be needed to 
train the ANN with these high dimensional samples. This 
is simply not practical for on-line treatment verification. 
Consequently, PCA was applied to reduce the 
dimensionality of the training images. PCA is a classical 
statistical method. It involves a mathematical procedure 
that transforms original correlated variables into a small 
number of uncorrelated variables called principal 
components. The first principal component accounts for 
as much of the variability in the data as possible, and each 
succeeding component accounts for as much of the 
remaining variability as possible. In our application, we 
keep the first 15 principal components. Training 451 
images with a reduced dimensionality of 15 using an un-
optimized Matlab program on a regular PC (Intel Xeon 
CPU with 2 GB RAM) resulted in a running time of less 
than 3 seconds, demonstrating the effectiveness of this 
refinement. 

3. Experimental results 

In our clinic, all hypofractionated lung radiotherapy 
patients are treated on a Varian Trilogy linac (Varian 
Medical Systems, Palo Alto, CA, USA) equipped with an 
electronic portal imaging device. During the treatment, 
the EPID was set to acquire images in the cine mode at a 
frame rate of 0.625 Hz. Figure 2 shows two sample cine
EPID images. The corresponding DRR was shown in 
Figure 1. 

Figure 2 Examples of cine EPID images. 
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Figure 3 DRR and cine EPID image. 

Six patients each treated with 4 or 5 fractions were 
included for our feasibility study. The total number of 
cine EPID images of each patient varies from 84 to 329 
depending on the treatment time. The examples of DRR 
and cine EPID images of patient 1 were displayed in 
Figure 1 and Figure 2. Figure 3 shows examples of DRR 
and cine EPID image of patient 2. The red contour on the 
DRR defines the bean aperture. Window size of 40 10�
pixels was used on each DRR to generate the training 
images. A radiation oncologist read the cine EPID images 
and manually classified them into classes 1 and -1, and 
this serves as our ground truth. The ANN was applied on 
the training images to build the neural network. We set in 
this study—if more than 95% of the tumor is inside the 
irradiation field, the corresponding training image is said 
in class 1. For each treatment field, one neural network 
needs to be built.

We measure the accuracy, recall and precision of the 
classification results. They are defined as: 

true positive
recall

true positive + false negative
�   (1) 

true positive
precision

true positive + false positive
�   (2) 

true positive true negative
accuracy

all

�
�                 (3)  

Accuracy measures the degree of exactness or fidelity, 
recall measures the degree of completeness, and precision 
measures the degree of reproducibility. 

Patient Accuracy  Precision Recall 
1 94.12 100.00 94.12 
2 99.87 98.86 98.89 
3 97.00 100.00 97.00 
4 98.86 99.87 98.89 
5 98.91 100.00 98.91 
6 79.17 100.00 79.17 

Average 94.66 99.79 94.50 
Table 1 Classification results in percentage. 

Table 1 lists the classification results of all six patients. 
Each number was averaged over all treatment fields. The 
average accuracy, precision, and recall numbers over all 
the patients are also listed in the last row of the table. 

The accuracy and recall results of patient 6 are low, 
although the precision of patient 6 is 100 percent. For all 
other patients, the results are good; the numbers are in 
high nineties most of the time. Note all the precisions are 
either 100% or close to 100%. This means the 
reproducibility is high, and the proposed algorithm is 
stable. On average, the proposed algorithm achieved 
accuracy of 94.66%, precision of 99.79%, and recall of 
94.50%.

4. Conclusion and future work 

We have proposed a novel approach for on-line 
treatment verification for hypofractionated radiotherapy. 
DRR was used to simulate cine EPID images for ANN 
training. Image processing techniques were applied on 
DRR to make DRR and cine EPID images closely 
resemble each other. PCA was also applied on training 
samples and cine EPID images acquired during the 
treatment to reduce their dimensionality in order to 
shorten the process time. We have tested our proposed 
algorithm on six hypofractioned lung patients off-line in a 
retrospective fashion. The average accuracy and recall 
numbers are high, and the average reproducibility is close 
to 100%. 

We intend to achieve even better results. More 
sophisticated image processing techniques will be applied 
to preprocess the DRR. We have already experienced a 
significant performance boost from pre-processing the 
images with the techniques described. Better image 
processing techniques should bring the classification 
accuracy rate even higher. All the ANN parameters were 
not optimized. We will investigate different combinations 
of parameters to find the set that yields the best 
performance. Now we use kV beam DRR. We are 
developing software to generate MV beam DRR with 
scattering effect which will better resemble cine EPID 
images obtained during the treatment. We are also 
collecting more patient data, hopefully with implanted 
fiducial markers, to further validate our proposed 
algorithm. 
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